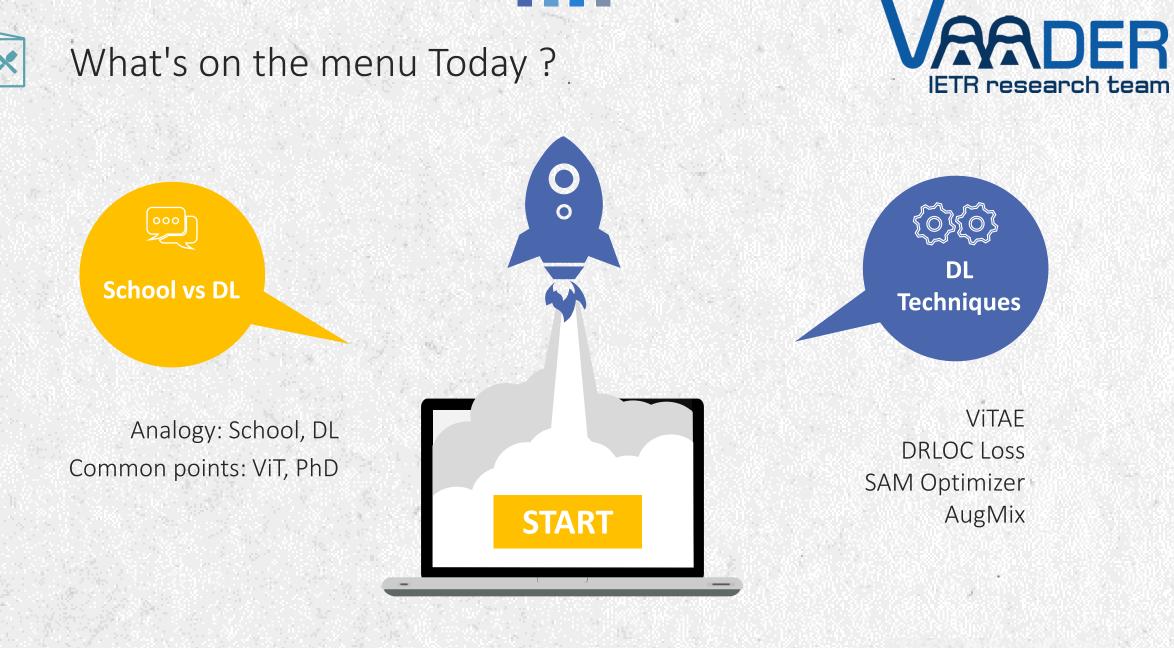


"AI FOR IMAGE" READING GROUP

MOUATH AOUAYEB

31/03/2022

- Is ViT a PhD Student ?
 School vs Deep Learning !
- Efficient Training of ViT on small DBs : update DL techniques



Student Vision Transformer MY Teachers Internships DATA MY Courses Deep Learning Loss LITTLE Courses Deep Learning Courses BOOK CLUB Administration Optimizer Exams TD Fine-tuning Supervised

School vs DL

Student Engineering Student PhD Student

Teacher

"Better than a thousand days of diligent study is one day with a great teacher" Japanese Proverb

Lessons

"Lessons in life will be repeated until they are learned" Frank Sonnenberg

Administration "Bad admin, to be sure, can destroy good policy; but good admin. can never save bad policy"

Adlai Stevenson

Deep Learning Model CNN Transformer

Loss

"Better than a thousand epochs of training is few epochs with a great Loss"

DATA

"DATA in batch will be repeated until they are learned"

Optimizer

"Bad optimizer, to be sure, can destroy good Training; but good optimizer can never save bad Training"

School vs DL

Epochs Exams Projects Internships Student Community life Gourp work TD: ok , test: not ok

Years of study

Supervised Learning

Unsupervised Learning

Fine-tuning

Noisy Student Training

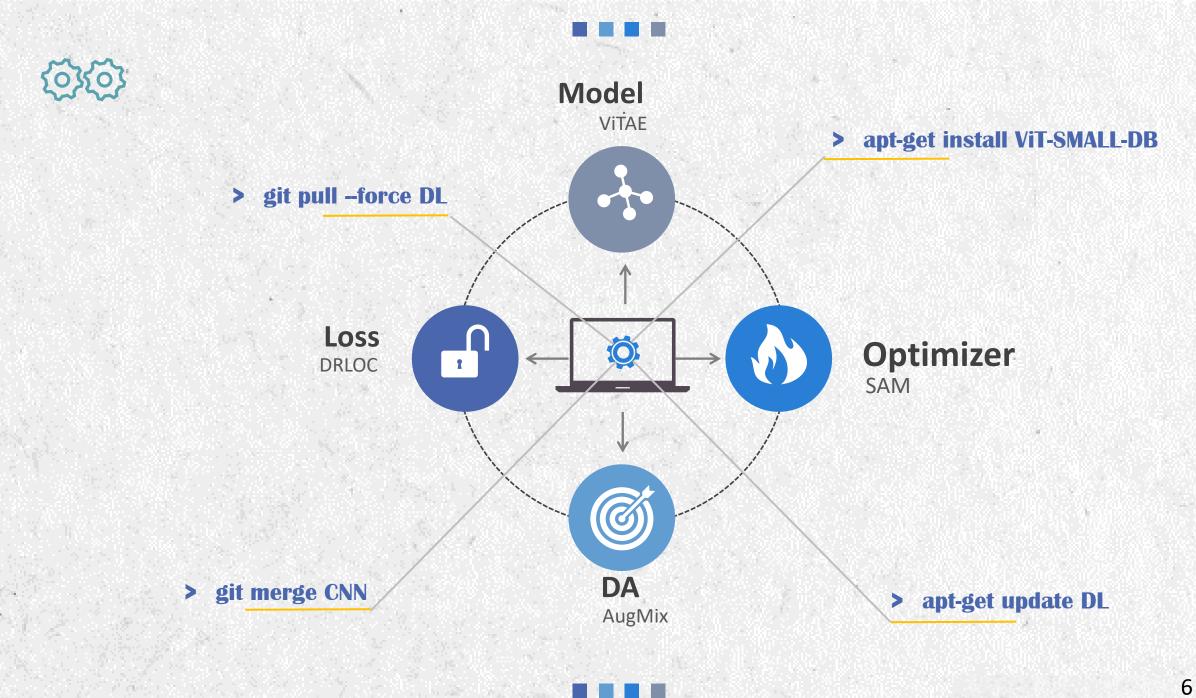
GPU Parallelization training

Overfitting

Is ViT a PhD Student ?

A PhD Student has good academic results, has a good spirit of critisim with innovative ideas and reads more corses and papers.

A ViT Model has good performances, has a good robustness with generalisation ability and needs more data for efficient training.



ViTAE Model

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias^[1] ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond^[2]

> Lack of Intrinsic Inductive Bias in modeling local visual structures and dealing with scale variance.

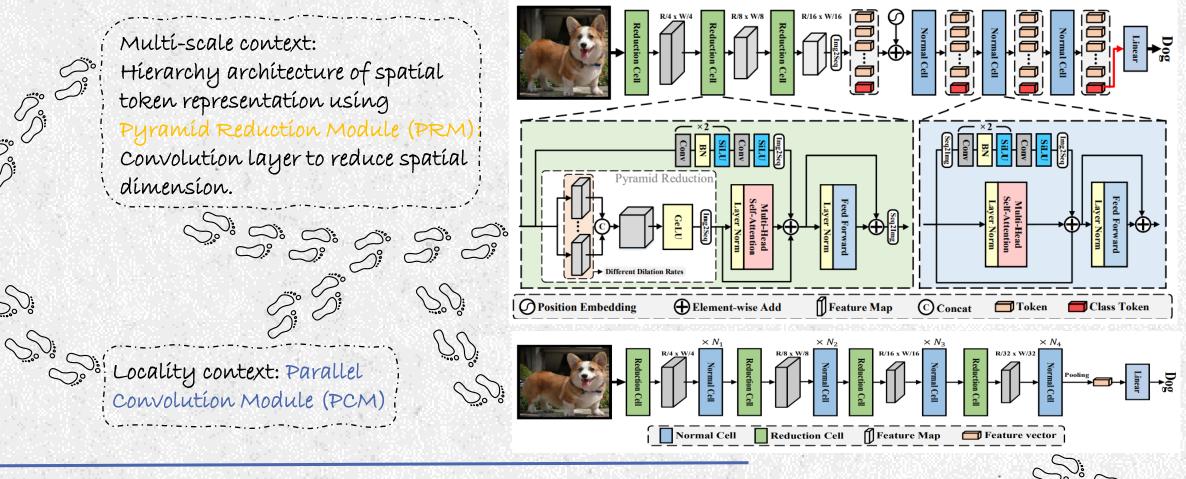
CNNs computes local correlation among neighbor pixel and use hierarchly structure to extract multi-scale features.

Xu, Y., Zhang, Q., Zhang, J., Tao, D., 2021. Vitae: Vision transformer advanced by exploring intrinsic inductive bias. CoRR abs/2106.03348
 Zhang, Q., Xu, Y., Zhang, J., Tao, D., 2022. Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond.

Po

DATA

ViTAE Model



[1] Xu, Y., Zhang, Q., Zhang, J., Tao, D., 2021. Vitae: Vision transformer advanced by exploring intrinsic inductive bias. CoRR abs/2106.03348
 [2] Zhang, Q., Xu, Y., Zhang, J., Tao, D., 2022. Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond.

Code: https://github.com/Annbless/ViTAE

ViTAE Model

Table 4 Generalization of ViTAE and SOTA methods on different downstream image classification tasks.

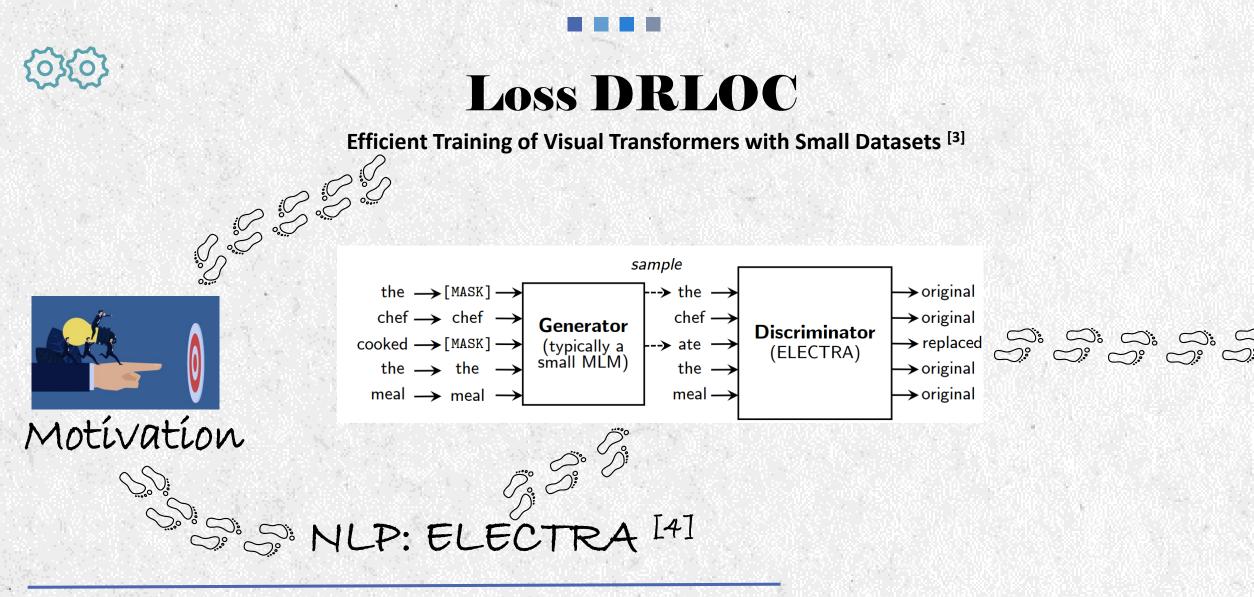
Model	Params (M)	Cifar10	Cifar100	iNat19	Cars	Flowers	Pets
Grafit ResNet-50 [73]	25.6	-	-	75.9	92.5	98.2	-
EfficientNet-B5 [70]	30	98.1	91.1	-	-	98.5	-
ViT-B/16 [22]	86.5	98.1	87.1	-	-	89.5	93.8
ViT-L/16 [22]	304.3	97.9	86.4	-	-	89.7	93.6
DeiT-B [72]	86.6	99.1	90.8	77.7	92.1	98.4	-
T2T-ViT-14 [92]	21.5	98.3	88.4	-	-	-	-
ViTAE-T	4.8	97.3	86.0	73.3	89.5	97.5	92.6
ViTAE-S	23.6	98.8	90.8	76.0	91.4	97.8	94.2
	2			HERE BELLE		202010-002-078	222.441
		D.S.C.D.	-		-		
		I CAR		×	**	100	

By scaling up the ViTAE to 644M parameters, they optain the stateof-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 classification accuracy on ImageNet real validation set, without using extra private data.

VITAE-S 23.6 98.8 90.8 76.0 91.4 97.8 94.2 Input Imput Imput<		ViTAE-T	4.8	97.3	86.0	73.3	89.5	97.5	92.6
T2T-VIT		ViTAE-S	23.6	98.8	90.8	76.0	91.4	97.8	94.2
T2T-VIT		The second second is a second second second							NEW YORK
	Input				1		*		Ê
	T2T-ViT				A.S.		۶-		<u>à</u>
	VITAE		1		· ·		\$		<u>i</u>
(a) (b)		(a)					(b)		

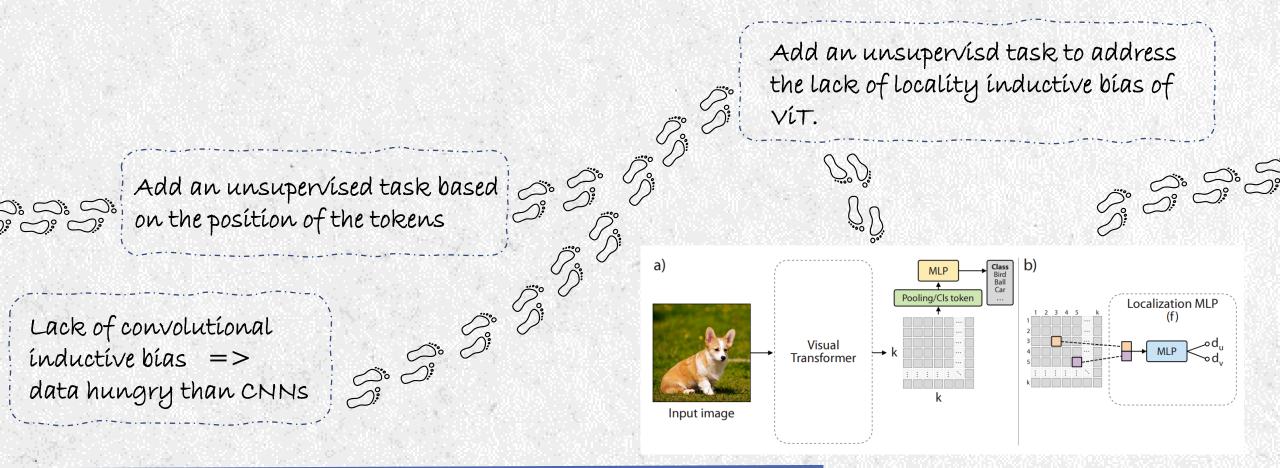
[2] Wen Y., Zhang K., Li Z., Qiao Y. (2016) A Discriminative Feature Learning Approach for Deep Face Recognition. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016.

Code: <u>https://github.com/KaiyangZhou/pytorch-center-loss</u>



[3] Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., Nadai, M.D., 2021. Efficient training of visual transformers with small-size datasets. CoRR abs/2106.03746.
 [4] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D., 2020. ELECTRA: Pre-training text encoders as discriminators rather than generators, in: ICLR.

Loss DRLOC



[3] Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., Nadai, M.D., 2021. Efficient training of visual transformers with small-size datasets. CoRR abs/2106.03746.
 [4] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D., 2020. ELECTRA: Pre-training text encoders as discriminators rather than generators, in: ICLR.

Loss DRLOC

Table 1: The size of the datasets used in our empirical analysis.

Dataset		Train size	Test size	Classes
ImageNet-	1K [48]	1,281,167	100,000	1000
ImageNet-	100 [52]	126,689	5,000	100
CIFAR-10	[31]	50,000	10,000	10
CIFAR-10	0 [31]	50,000	10,000	100
Oxford Flo	wers102 [41]	2,040	6,149	102
SVHN [40]	73,257	26,032	10
ClipA	rt	33,525	14,604	
Jo Infog	raph	36,023	15,582	
Infogu Painti Quick O Real	ng	50,416	21,850	345
Quick	draw	120,750	51,750	545
Real		120,906	52,041	
Sketc	h	48,212	20,916	

Table 4: Top-1 accuracy of VTs and ResNets, trained from scratch on different datasets (100 epochs).

		CIFAR-10	CIFAR-100	Flowers102	NHAS	ClipArt	Infograph	Painting	Quickdraw	Real	Sketch
	CvT-13	89.02	73.50	54.29	91.47	60.34	19.39	54.79	70.10	76.33	56.98
CvT	CvT-13+ \mathcal{L}_{drloc}	90.30	74.51	56.29	95.36	60.64	20.05	55.26	70.36	77.05	57.56
	CVI-15 + Zarioc	(+1.28)	(+1.01)	(+2.00)	(+3.89)	(+0.30)	(+0.67)	(+0.47)	(+0.26)	(+0.68)	(+0.58)
	Swin-T	59.47	53.28	34.51	71.60	38.05	8.20	35.92	24.08	73.47	11.97
Swin	Swin-T+ \mathcal{L}_{drloc}	83.89	66.23	39.37	94.23	47.47	10.16	41.86	69.41	75.59	38.55
		(+24.42)	(+12.95)	(+4.86)	(+22.63)	(+9.42)	(+1.96)	(+5.94)	(+45.33)	(+2.12)	(+26.58)
	T2T-ViT-14	84.19	65.16	31.73	95.36	43.55	6.89	34.24	69.83	73.93	31.51
T2T	T2T-ViT-14+ \mathcal{L}_{drloc}	87.56	68.03	34.35	96.49	52.36	9.51	42.78	70.16	74.63	51.95
	121 VII I ··· ~artoc	(+3.37)	(+2.87)	(+2.62)	(+1.13)	(+8.81)	(+2.62)	(+8.54)	(+0.33)	(+0.70)	(+20.44)
	ResNet-50	91.78	72.80	46.92	96.45	63.73	19.81	53.22	71.38	75.28	60.08
ResNet	ResNet-50+ \mathcal{L}_{drloc}	92.03	72.94	47.65	96.53	63.93	20.79	53.52	71.57	75.56	59.62
	icosi (et 20 i Zarioc	(+0.25)	(+0.14)	(+0.73)	(+0.08)	(+0.20)	(+0.98)	(+0.30)	(+0.19)	(+0.28)	(-0.46)

[3] Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., Nadai, M.D., 2021. Efficient training of visual transformers with small-size datasets. CoRR .

abs/2106.03746.

[4] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D., 2020. ELECTRA: Pre-training text encoders as discriminators rather than generators, in: ICLR.

Optimizer SAM

Sharpness-Aware Minimization for Efficiently Improving Generalization^[5] When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations^[6]

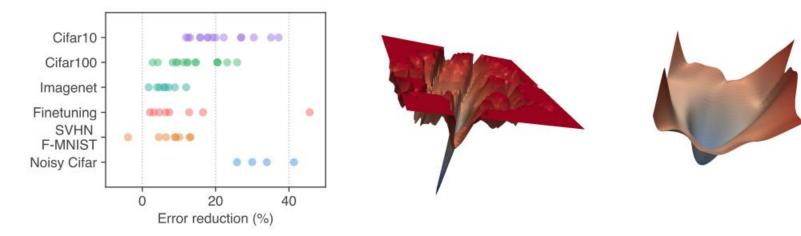
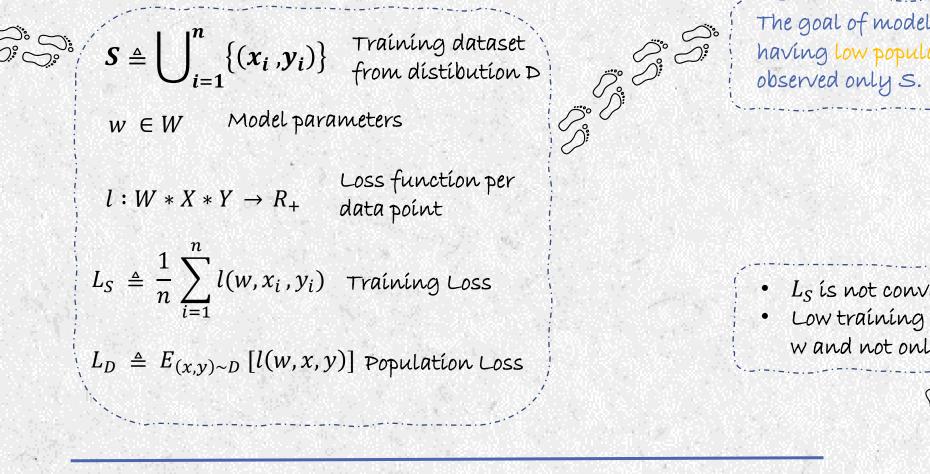


Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset / model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD converged. (right) A wide minimum to which the same ResNet trained with SAM converged.

[5] Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2020. Sharpness-aware minimization for efficiently improving generalization. CoRR abs/2010.01412.
 [6] Chen, X., Hsieh, C., Gong, B., 2021. When vision transformers outperform resnets without pretraining or strong data augmentations. CoRR abs/2106.01548.

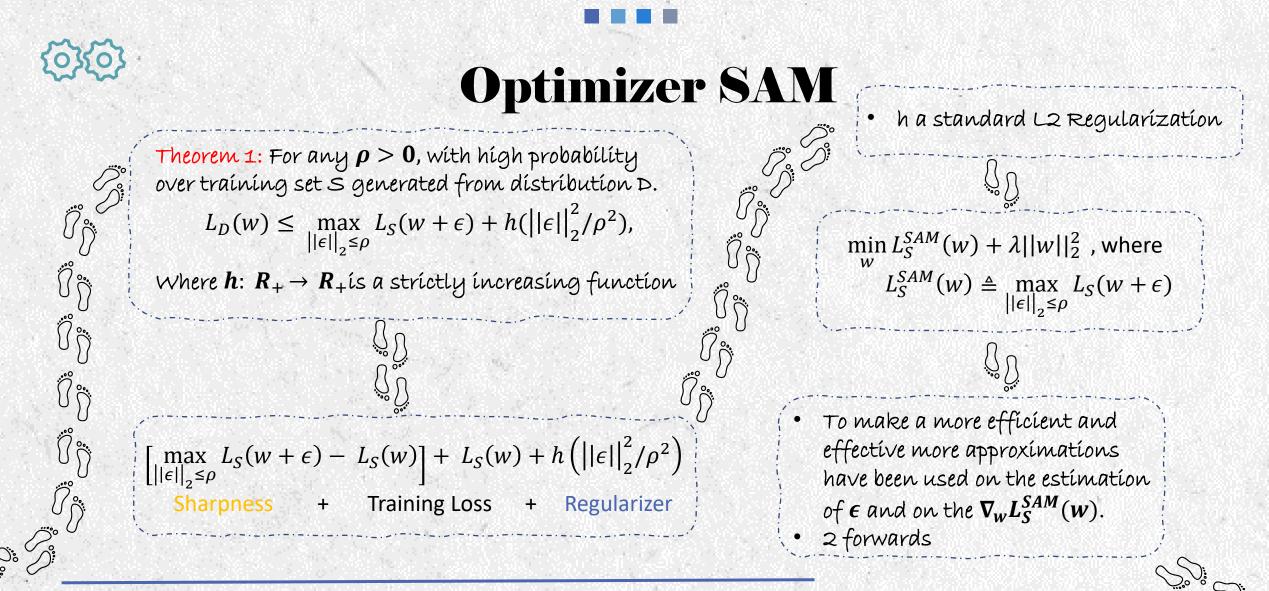
Optimizer SAM



The goal of model training is to select w having low population loss L_D (w), having observed only S.

L_s is not convex in w (modern models),
Low training loss for the neighbohrs of w and not only for w,

[5] Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2020. Sharpness-aware minimization for efficiently improving generalization. CoRR abs/2010.01412.
 [6] Chen, X., Hsieh, C., Gong, B., 2021. When vision transformers outperform resnets without pretraining or strong data augmentations. CoRR abs/2106.01548.



[5] Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2020. Sharpness-aware minimization for efficiently improving generalization. CoRR abs/2010.01412.
 [6] Chen, X., Hsieh, C., Gong, B., 2021. When vision transformers outperform resnets without pretraining or strong data augmentations. CoRR abs/2106.01548.

Wady

Optimizer SAM

- Improves the ImageNet top-1 error-rate of ResNet-152 with 2%.
- · More accuracy with more epochs without overfitting.
- Improvesperformance relative to finetuning
- More robust: with 80% Noise rate, 79,9% accuracy is obtained with SAM instead of the 26,2% accuracy with SGD.
- +7,6% improvement on accuracy with SGD+SAM vs SGD on IN
- VíT + SAM outperforms ResNet and ResNet + SAM on ImageNet

Model	#params	Throughput (img/sec/core)	ImageNet	ReaL	V2	ImageNet-R	ImageNet-C
			ResNe	t			
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)
			Vision Trans	former			
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)

[5] Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B., 2020. Sharpness-aware minimization for efficiently improving generalization. CoRR abs/2010.01412.
 [6] Chen, X., Hsieh, C., Gong, B., 2021. When vision transformers outperform resnets without pretraining or strong data augmentations. CoRR abs/2106.01548.

Code: https://github.com/google-research/sam

·n∇L(w

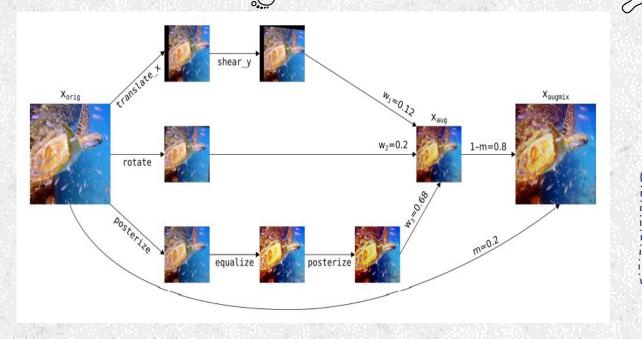
–n⊽Ľ(w_{adv})

Wt

 W_{t+1}^{SAM}

Data Aumentation

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty^[7]



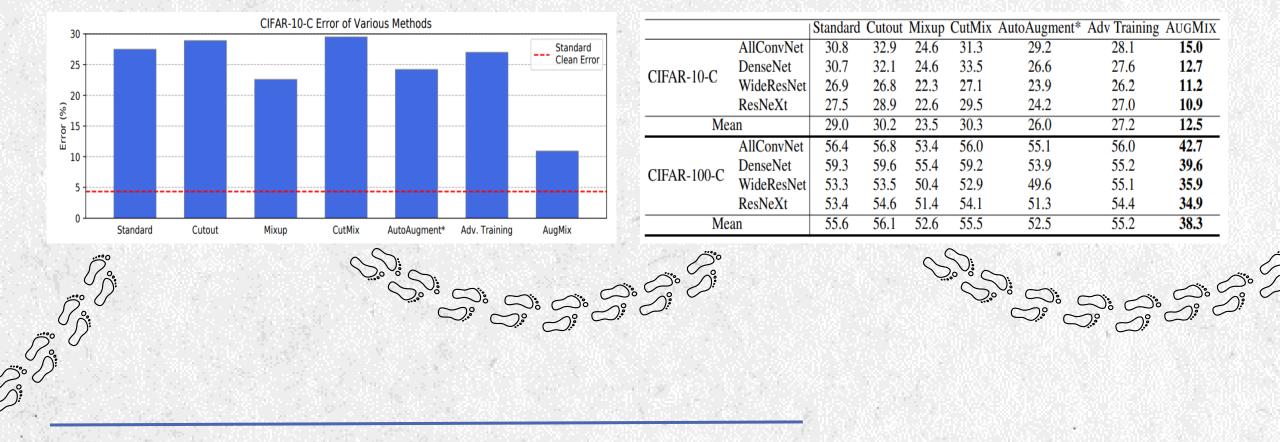
couple with this augmentation scheme a loss that enforces smoother neural network responses. Since the semantic content of an image is approximately preserved with AUGMIX, we should like the model to embed xorig, xaugmix1, xaugmix2 similarly.

$$\begin{split} L(p_{orig,y}) + \lambda JS(p_{orig}; p_{augmix1}; p_{augmix2}) \\ JS(p_{orig}; p_{augmix1}; p_{augmix2}) = \\ \frac{1}{3} \left(KL[p_{orig}||M] + KL[p_{augmix1}||M] + KL[p_{augmix1}||M] \right) \end{split}$$

[7] Hendrycks*, D., Mu*, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshmi-narayanan, B., 2020. Augmix: A simple method to improve robustness and uncertainty under data shift, in: International Conference on Learning Representations.

Data Aumentation

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty^[7]

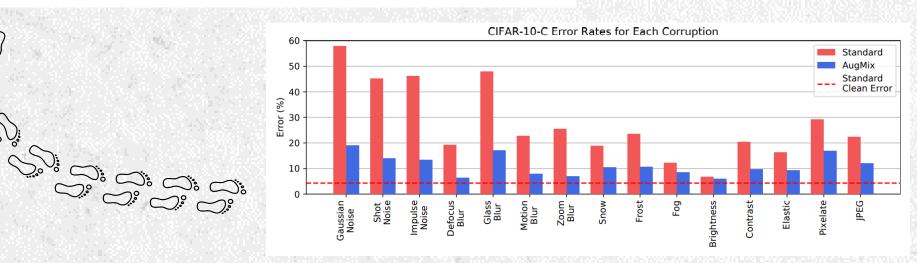


[7] Hendrycks*, D., Mu*, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshmi-narayanan, B., 2020. Augmix: A simple method to improve robustness and uncertainty under data shift, in: International Conference on Learning Representations.

Data Aumentation

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty^[7]

Method	CIFAR-10-C Error Rate	CIFAR-100-C Error Rate
Standard	26.9	53.3
AutoAugment [*]	23.9	49.6
Random AutoAugment*	17.0	43.6
Random AutoAugment* + JSD Loss	14.7	40.8
AugmentAndMix (No JSD Loss)	13.1	39.8
AUGMIX (Mixing + JSD Loss)	11.2	35.9



[7] Hendrycks*, D., Mu*, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshmi-narayanan, B., 2020. Augmix: A simple method to improve robustness and uncertainty under data shift, in: International Conference on Learning Representations.

THANK YOU

AI

IS IT THE TIME TO LEARN FROM MACHINES HOW TO IMPROVE THE HUMAN EDUCATION SYSTEM?

MOUATH