

Graph Attention Networks

Nicolas Beuveo Nicolas.Beuve@insa-rennes.fr

VARDER

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$\mathbf{G} = (\mathbf{N}, \mathbf{E}) \begin{cases} n = card(N) \\ m = card(E) \end{cases}$$

$$\mathbf{h} = \{\overrightarrow{h}_1, \dots, \overrightarrow{h}_N\}, \quad \overrightarrow{h}_i \in \mathbb{R}^F$$

$$\mathbf{N}_i = \{n_j, (n_i, n_j) \in \mathbf{E}\}$$

$$N = \{1,2,3,4\}$$

$$\mathbf{E} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (3,3), (4,4)\}$$

$$N_1 = \{1,2,3,4\}$$
 $N_2 = \{1,2,3\}$

$$N_3 = \{1,2,3\}$$
 $N_4 = \{1,4\}$

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

$$\overrightarrow{h}_i' = \sigma\left(\mathbf{W} \overrightarrow{h}_i\right)$$

$$(\overrightarrow{h}_1)$$
 (\overrightarrow{h}_1)

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

Activation function

Linear transformation $\in \mathbb{R}^{F' \times F}$

$$(\overrightarrow{h}_1)$$
 (\overrightarrow{h}_1)

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

$$(\overrightarrow{h}_2)$$

$$\overrightarrow{h}_{i}' = \sigma \left(\frac{1}{card(N_{i})} \sum_{j \in N_{i}} \mathbf{W} \overrightarrow{h}_{j} \right)$$

$$\overrightarrow{h}_{i}' = \sigma \left(\frac{1}{card(N_{i})} \sum_{j \in N_{i}} \mathbf{W} \overrightarrow{h}_{j} \right)$$

William L. Hamilton and Rex Ying and Jure Leskovec. 2018. Inductive Representation Learning on Large Graphs.

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

$$\overrightarrow{h}_{i}' = \sigma \left(\frac{1}{card(N_{i})} \sum_{j \in N_{i}} \mathbf{W} \overrightarrow{h}_{j} \right)$$

$$\overrightarrow{h}_{i}' = \sigma \left(\frac{1}{card(N_{i})} \sum_{j \in N_{i}} \mathbf{W} \overrightarrow{h}_{j} \right)$$

William L. Hamilton and Rex Ying and Jure Leskovec. 2018. Inductive Representation Learning on Large Graphs.

Graph Attention layer

Goal: Design a layer which takes nodes feature $h_i \in \mathbb{R}^F$ as input and output a new feature $h_i' \in \mathbb{R}^{F'}$.

$$\overrightarrow{h}_{i}' = \sigma \left(\sum_{j \in N_{i}} \alpha_{ij} \ \mathbf{W} \overrightarrow{h}_{j} \right)$$

Petar Veličković and Guillem Cucurull and Arantxa Casanova and Adriana Romero and Pietro Liò and Yoshua Bengio. 2018. Graph Attention Networks.

Attention on graphs?

$$\overrightarrow{h}_{i}' = \sigma \left(\sum_{j \in N_{i}} \alpha_{ij} \ \mathbf{W} \overrightarrow{h}_{j} \right)$$

Attention on graphs?

$$\overrightarrow{h}_{i}' = \sigma \left(\sum_{j \in N_{i}} \alpha_{ij} \ \mathbf{W} \overrightarrow{h}_{j} \right)$$

• α_{ij} represent the interest of \overrightarrow{h}_j in the computation of \overrightarrow{h}_i' .

Attention on graphs?

$$\overrightarrow{h}_{i}' = \sigma \left(\sum_{j \in N_{i}} \alpha_{ij} \ \mathbf{W} \overrightarrow{h}_{j} \right)$$

• α_{ij} represent the interest of \overrightarrow{h}_j in the computation of \overrightarrow{h}_i' .

• coefficient easily comparable across different nodes.

$$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$$

$$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$$

$$e_{ij} = a(\mathbf{W}h_i, \mathbf{W}h_j)$$

$$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$$

$$e_{ij} = a(\mathbf{W}h_i, \mathbf{W}h_j)$$

If a is a single perceptron parametrized by a vector $\overrightarrow{a} \in \mathbb{R}^{2F'}$, and followed by a LeakyReLU activation function, the expression becomes:

$$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$$

$$e_{ij} = a(\mathbf{W}h_i, \mathbf{W}h_j)$$

If a is a single perceptron parametrized by a vector $\overrightarrow{a} \in \mathbb{R}^{2F'}$, and followed by a LeakyReLU activation function, the expression becomes:

$$e_{ij} = LeakyReLU(\overrightarrow{a}^T[\mathbf{W}h_i | |\mathbf{W}h_j])$$

$$\alpha_{ij} = softmax_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathbb{N}_i} \exp(e_{ik})}$$

$$\alpha_{ij} = softmax_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathbb{N}_i} \exp(e_{ik})}$$

$$= \frac{\exp\left(LeakyReLU(\overrightarrow{a}^{T}[\mathbf{W}h_{i}||\mathbf{W}h_{j}])\right)}{\sum_{k \in \mathbf{N}_{i}} \exp\left(LeakyReLU(\overrightarrow{a}^{T}[\mathbf{W}h_{i}||\mathbf{W}h_{k}])\right)}$$

Multi-head attention

Multi-head attention

$$\overrightarrow{h}_{i}' = \left| \int_{k=1}^{K} \sigma \left(\sum_{j \in N_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \overrightarrow{h}_{j} \right) \right|$$

Multi-head attention

$$\overrightarrow{h}_{i}' = \left\| \int \sigma \left(\sum_{j \in N_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \overrightarrow{h}_{j} \right) \right\|$$

Or, for the last layer:

$$\overrightarrow{h}_{i}' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in N_{i}} \alpha_{ij}^{k} \mathbf{W}^{k} \overrightarrow{h}_{j} \right)$$

Input

Super pixel = (average luminosity, geometric centroid)

	MNIST-75
MoNET [15] SplineCNN [6] GeoGCN [23]	91.11% $95.22%$ $95.95%$
GAT-1Head GAT-2Head	95.83% $96.19%$

