
1

A GENTLE INTRODUCTION TO
HARDWARE ARCHITECTURES
FOR DNN ACCELERATION
Vaader Reading Group, 06/05/21

Mickaël Dardaillon - mdardail@insa-rennes.fr

2Menu du jour

DNN layers
Architecture support

GPUs
SIMT Machines

Systolic Arrays
Domain-Specific Architectures

DNN Optimizations
for hardware acceleration

Chapter 4: Data-Level Parallelism
Chapter 7: Domain-Specific
Architectures

3

DNN LAYERS

Architecture support

4Arithmetic Intensity

Arithmetic intensity is the ratio of floating-point operations per
byte of memory accessed.
It is computed by taking the total number of operations for a
program and dividing it by the number of data bytes transferred
during program execution.

Arithmetic intensity is the ratio of floating-point operations per byte of memory
accessed. It can be calculated by taking the total number of floating-point opera-
tions for a program divided by the total number of data bytes transferred to main
memory during program execution. Figure 4.10 shows the relative arithmetic
intensity of several example kernels.

Peak floating-point performance can be found using the hardware specifica-
tions. Many of the kernels in this case study do not fit in on-chip caches, so peak
memory performance is defined by the memory system behind the caches. Note
that we need the peak memory bandwidth that is available to the processors,
not just at the DRAM pins as in Figure 4.27 on page 328. One way to find the
(delivered) peak memory performance is to run the Stream benchmark.

Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on
the left and the Intel Core i7 920 multicore computer on the right. The vertical Y-
axis is achievable floating-point performance from 2 to 256 GFLOPS/s. The hor-
izontal X-axis is arithmetic intensity, varying from 1/8 FLOP/DRAM byte
accessed to 16 FLOP/DRAM byte accessed in both graphs. Note that the graph
is a log-log scale, and that Rooflines are done just once for a computer.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we drew a vertical line through that point, the performance of the ker-
nel on that computer must lie somewhere along that line. We can plot a horizontal
line showing peak floating-point performance of the computer. Obviously, the
actual floating-point performance can be no higher than the horizontal line because
that is a hardware limit.

How could we plot the peak memory performance? Because the X-axis is
FLOP/byte and the Y-axis is FLOP/s, bytes/s is just a diagonal line at a 45-degree
angle in this figure. Thus we can plot a third line that gives the maximum floating-
point performance that the memory system of that computer can support for a given

Arithmetic intensity

O(N) O(log(N)) O(1)

Sparse
matrix
(SpMV)

Structured
grids
(Stencils,
PDEs)

Structured
grids
(Lattice
methods)

Spectral
methods
(FFTs)

Dense
matrix
(BLAS3)

N-body
(Particle
methods)

Figure 4.10 Arithmetic intensity, specified as the number of floating-point opera-
tions to run the program divided by the number of bytes accessed in main memory
(Williams et al., 2009). Some kernels have an arithmetic intensity that scales with prob-
lem size, such as a dense matrix, but there are many kernels with arithmetic intensities
independent of problem size.

308 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2018.

!"#$ℎ&'$#(#)$')*#$+ =)- ./'"!$#.)*
)- 0!$! !(('**

5

Roofline model

A visual performance
model to find bound
and bottlenecks.

The horizontal line
shows the peak
computational
performance, the
diagonal is the peak
memory performance.

An operational intensity is a vertical
line, which cross the roofline at its
peak performance.

N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific architecture for deep
neural networks,” Commun. ACM, vol. 61, no. 9, pp. 50–59, 2018.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 55

contributed articles

of the roofline. The x-axis is operational
intensity, measured as floating-point
operations per DRAM-byte accessed.
Memory bandwidth is bytes per second,
which turns into the “slanted” part of
the roofline, since (FLOPS/sec)/ (FLOPS/
Byte) = Bytes/sec. Without sufficient
operational intensity, a program is
memory-bandwidth-bound and lives
under the slanted part of the roofline.

The gap between the actual opera-
tions per second of an application and
the ceiling directly above it shows the
potential benefit of further perfor-
mance tuning while leaving operational
intensity untouched; optimizations that
increase operational intensity (such as
cache blocking) might yield even great-
er performance benefit.

To use the Roofline model for the
TPU, when DNN applications are quan-
tized, we first replaced floating-point
operations with integer operations. As
weights do not normally fit in on-chip
memory for DNN applications, the sec-
ond change was to redefine operation-
al intensity to be integer multiply-accu-
mulate operations per byte of weights
read, as in Table 1.

Figure 3 shows the Roofline models
for a single die of the TPU, CPU, and
GPU on log-log scales. The TPU has a
long “slanted” part of its roofline, where

the illusion to the programmer that
the 256 inputs are read at once and in-
stantly update one location of each of
256 accumulators. From a correctness
perspective, software is unaware of the
systolic nature of the matrix unit, but,
for performance, must account for the
latency of the unit.

The TPU software stack had to be
compatible with those developed for
CPUs and GPUs so applications could
be ported quickly to the TPU. The por-
tion of the application run on the TPU
is typically written in TensorFlow and
compiled into an API that can run on
GPUs or TPUs.24

CPU, GPU, TPU Platforms
Most architecture research papers are
based on simulations running small,
easily portable benchmarks that project
potential performance if ever imple-
mented. This article is not one of them
but rather a retrospective evaluation of
machines running real, large produc-
tion workloads in datacenters since
2015, some used routinely by more than
one billion people. These six applica-
tions, as in Table 1, are representative of
95% of TPU datacenter use in 2016.

Since we are measuring production
workloads, the benchmark platforms
for us to compare must also be deploy-
able in Google datacenters, as that is the
only place the production workloads
run. The many servers in Google data-
centers and the requirements for ap-
plication dependability at Google scale
mean machines must at minimum
check for memory errors. As the Nvidia
Maxwell GPU and the more recent Pas-
cal P40 GPU do not check for errors on
internal memory, it is infeasible to de-
ploy these processors at Google scale
and meet the strict reliability require-
ments of Google applications.

Table 2 reports the servers deployed
in Google datacenters we can compare
to the TPU. The traditional CPU server
is represented by an 18-core, dual-
socket Haswell processor from Intel, a
platform that is also the host server for
GPUs or TPUs. Google engineers use
four TPU chips in the server.

Some computer architects are un-
aware of the time between when a
product is announced and when the
chips, boards, and software are ready
to reliably serve customers in data-
centers. Table 3 identifies that gap

for GPUs in commercial cloud com-
panies was, from 2014 to 2017, five to
25 months. Hence, the right GPU to
compare to the 2015 TPU is clearly the
Nvidia K80, which is in the same semi-
conductor process and was announced
six months before TPU deployment.

Each K80 card contains two dies and
offers error detection and correction
on internal memory and DRAM. Up to
eight K80 dies can be installed in this
server, which is the configuration we
benchmark. Both the CPU and GPU use
large dies—approximately 600 mm2, or
three times the size of a Core i7.

Performance: Rooflines,
Response Time, Throughput
To illustrate the performance of the
six apps on the three processors, we
adapted the Roofline Performance
model from high-performance
computing (HPC).36 This simple vi-
sual model is not perfect but offers
insights into the causes of perfor-
mance bottlenecks. The assumption
behind the model is that applications
do not fit in on-chip caches so are
either computation-limited or mem-
ory-bandwidth-limited. For HPC, the
y-axis is performance in floating-point
operations per second, so the peak com-
putation rate thus forms the “flat” part

Figure 3. The rooflines of TPUs, CPUs, and GPUs combined into a single log-log graph.
Stars are for the TPU, triangles for the K80, and circles for Haswell; all TPU stars are at
or above the other two rooflines.

TPU Roofline
K80 Roofline
HSW Roofline
LSTM0
LSTM1
MLP1
MLP0
CNN0
CNN1
LSTM0
LSTM1
MLP1
MLP0
CNN0
CNN1

MLP1
MLP0
CNN0
CNN1

Operational Intensity: MAC Ops/weight byte (log scale)

Log-Log Scale

Te
ra

O
ps

/s
ec

 (l
og

 s
ca

le
)

1

0.1

1

10

100

10 100 1,000

LSTM0
LSTM1

6Fully Connected Layer

Equivalent to Matrix Multiplication

!"#$"%!#& = 2×*×+×,
2× *×, ++×, + *×+

“Nvidia Deep Learning Performance Documentation”

7Convolutional Layer

Equivalent to Matrix Multiplication
Virtual memory duplication

the feature map, height and width dimensions or per spatial location, per image across the feature
map dimension. cuDNN provides average and max pooling operations, as well as a set of tensor
transformation routines, such as those that add tensors, with optional broadcasting. The goal of
providing these functions is to reduce the amount of parallel code that is required for deep learning
frameworks, by providing flexible, well-optimized versions of these commonly used functions. With
cuDNN, it is possible to write programs that train standard convolutional neural networks without
writing any parallel code, but simply using cuDNN and cuBLAS.

3 Implementation

The majority of functions that cuDNN provides have straightforward implementations. The convo-
lution implementation is not as obvious, so we will outline the motivation and reasoning behind our
design choices.

There are several ways to implement convolutions efficiently. Our goal is to provide performance
as close as possible to matrix multiplication, while using no auxiliary memory. GPU memory is
high bandwidth, but low capacity, and is therefore a scarce resource. When training deep networks,
ideally the GPU memory should be filled with data, parameters, and neuron responses, not auxiliary
data structures needed by the convolution algorithm. Several approaches to computing convolu-
tions require large auxiliary data structures, and therefore we do not consider these approaches for
cuDNN.

One approach is to lower the convolutions into a matrix multiplication, following [6]. This can be
done by reshaping the filter tensor F into a matrix Fm with dimensions K ⇥ CRS, and gathering a
data matrix by duplicating the original input data into a matrix Dm with dimensions CRS⇥NPQ.
The computation can then be performed with a single matrix multiply to form an output matrix Om

with dimension K ⇥NPQ.

D0# D1# D2#

D3# D4# D5#

D6# D7# D8#

D0# D1# D2#

D3# D4# D5#

D6# D7# D8#

F0# F1#

F2# F3#

F0# F1#

F2# F3#

F0# F1#

F2# F3#

G0# G1#

G2# G3#

G0# G1#

G2# G3#

G0# G1#

G2# G3#

![",:,:,:$]!

F0# F1# F2# F3# F0# F1# F2# F3# F0# F1# F2# F3#

G0# G1# G2# G3# G0# G1# G2# G3# G0# G1# G2# G3#

D4# D5# D7# D8#

D3# D4# D6# D7#

D1# D2# D4# D5#

D0# D1# D3# D4#

D4# D5# D7# D8#

D3# D4# D6# D7#

D1# D2# D4# D5#

D0# D1# D3# D4#

D4# D5# D7# D8#

D3# D4# D6# D7#

D1# D2# D4# D5#

D0# D1# D3# D4#

#[",",:,:]!

D0# D1# D2#

D3# D4# D5#

D6# D7# D8#

#[",$,:,:]! #[",%,:,:]!

![$,:,:,:]!

Image$data$

Filter$data$
N" =" 1"
C" =" 3"
H" =" 3"
W" =" 3"
K" =" 2"
R" =" 2"
S" =" 2"

u=v" =" 1"
pad_h" =" 0"
pad_w" =" 0"

Om#Fm#

Figure 1: Convolution lowering

Figure 1 illustrates how a simple convolution can be lowered to a matrix multiplication. The colors
in this illustration represent the input feature maps, and elements of D and F are uniquely labeled in
the illustration so as to show how each participates in forming Dm and Fm. The filter matrix Fm has
dimensions K⇥CRS = 2⇥12, while the data matrix Dm has dimensions CRS⇥NPQ = 12⇥4.
Note that each element of D is duplicated up to RS = 4 times in Dm. The output matrix Om has
dimensions K ⇥NPQ = 2⇥ 4.

4

S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning”

8Convolutional Layer

!"#$"%!#& = 2× *×+×,×- × .×/×0
2× *×.×1×2 + +×.×/×0 + *×+×,×-

“Nvidia Deep Learning Performance Documentation”

9RNN + Transformers

“Nvidia Deep Learning Performance Documentation”

Equivalents to Matrix Multiplication

Forget DNN, let’s implement Matrix Multiplication!

10

GPUS

SIMT Machines

11Single Instruction Multiple Threads (SIMT)

Scalar ! = # + % SIMT ! = # + %
for(i = 0; i < N; i++) {

C[i] = A[i] + B[i];
}

kernel(){
tid = blkDim * blkId + thId
C[tid] = A[tid] + B[tid]

}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Thread

Warp 0 Warp 1 Warp 2 Warp 3

Block

J. Gómez Luna and O. Mutlu, “Computer Architecture: GPU Programming,” ETH Zurich, Fall 2020.

12Latency hiding

2 active Warps 4 active Warps

Warp 0

ti
m

e

Instruction 3

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 0

ti
m

e

Instruction 3

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5

J. Gómez Luna and O. Mutlu, “Computer Architecture: GPU Programming,” ETH Zurich, Fall 2020.

13Data layout

Data layout has an effect on performance
Shared memory is interleaved (banked)
Typically 32 banks on Nvidia GPUs

“Nvidia Deep Learning Performance Documentation”

14Matrix Multiplication: SIMT way

Naïve implementation

!"#$"%!#& = 2×*
2× * + * = 1

2

kernel(){
y = blkDim.y * blkId.y + thId.y;
x = blkDim.x * blkId.x + thId.x;
for (k = 0; k < K; k++) {

C[y][x] += A[y][k] * B[k][x];
}}

“Nvidia Deep Learning Performance Documentation”

15Matrix Multiplication: SIMT way

Tiled implementation

!"#$"%!#& = 2×*×+,-./×0,-./
2× 0,-./×* ++,-./×* + 0,-./×+,-./

kernel(){
y = (blkDim.y * blkId.y + thId.y) * Mtile;
x = (blkDim.x * blkId.x + thId.x) * Ntile;
for (k = 0; k < K; k ++) {

for (i = y; i < y + Mtile; i++) {
for (j = x; j < x + Ntile; j++) {

C[i][j] += A[i][k] * B[k][j];
}}}}

“Nvidia Deep Learning Performance Documentation”

16Matrix Multiplication: SIMT way

Tiled2 implementation

!"#$"%!#& = 2×*×+,-./×0,-./
2× 0,-./×* ++,-./×* + 0,-./×+,-./

Too complex?
• Use cuBLAS and cuDNN!
• Follow Nvidia optimization doc!

kernel(){
y = (blkDim.y * blkId.y + thId.y) * Mtile;
x = (blkDim.x * blkId.x + thId.x) * Ntile;
for (k = 0; k < K; k += Ktile) {

for (i = y; i < y + Mtile; i++) {
for (j = x; j < x + Ntile; j++) {

for (kk = k; kk < k + Ktile; kk++) {
C[i][j] += A[i][kk] * B[kk][j];

}}}}}

“Nvidia Deep Learning Performance Documentation”

17Nvidia GPUs

Jetson Nano (Maxwell, 2014)
• 4 Streaming Multi-processors
• 32 CUDA cores / SM
• ~235 GFLOPS FP32
• 15 W

RTX 8000 (Turing, 2018)
• 72 Streaming Multi-processors
• 64 CUDA cores / SM
• 16,3 TFLOPS FP32
• 295 W

RTX A6000 (Ampere, 2020)
• 84 Streaming Multi-processors
• 128 CUDA cores / SM
• 38,7 TFLOPS FP32
• 300 W

NVIDIA A100 Tensor Core GPU Architecture In-Depth

22
NVIDIA A100 Tensor Core GPU Architecture

Figure 7. GA100 Streaming Multiprocessor (SM)

“NVIDIA A100 Tensor Core GPU Architecture”

18

SYSTOLIC ARRAYS

Domain-Specific Architectures

19Domain-Specific Architectures

Guidelines for DSA
• Use dedicated memories to minimize the distance over which data is moved.
• Invest the resources saved from dropping advanced microarchitectural optimizations

into more arithmetic units or bigger memories.
• Use the easiest form of parallelism that matches the domain.
• Reduce data size and type to the simplest needed for the domain.
• Use a domain-specific programming language to port code to the DSA.

J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, 2018.

to some of the techniques used in constructing large soft-
ware systems, are essential.1I In addition, special-purpose
systems based on simple, regular designs are likely to be
modular and therefore adjustable to various performance
goals-that is, system cost can be made proportional to
the performance required. This suggests that meeting the
architectural challenge for simple, regular designs yields
cost-effective special-purpose systems.

Concurrency and communication. There are essential-
ly two ways to build a fast computer system. One is to use
fast components, and the other is to use concurrency. The
last decade has seen an order of magnitude decrease in the
cost and size of computer components but only an incre-
mental increase in component speed.'2 With current
technology, tens of thousands of gates can be put in a
single chip, but no gate is much faster than its TTL
counterpart of 10 years ago. Since the technological trend
clearly indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements. The degree of concurrency in a special-purpose
system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is
designed to introduce high degrees of pipelining and
multiprocessing. When a large number of processing
elements work simultaneously, coordination and com-
munication become significant-especially with VLSI
technology where routing costs dominate the power,
time, and area required to implement a computation.13
The issue here is to design algorithms that support high
degrees of concurrency, and in the meantime to employ
only simple, regular communication and control to enable
efficient implementation.

Balancing computation with I/O. Since a special-
purpose system typically receives data and outputs results
through an attached host, I/O considerations influence
overall performance. (The host in this context can mean a
computer, a memory, a real-time device, etc. In practice,
the special-purpose system may actually input from one
"physical" host and output to another.) The ultimate

Figure 1. Basic principle of a systolic system.

performance goal of a special-purpose system is-and
should be no more than-a computation rate that bal-
ances the available I/O bandwidth with the host. Since an
accurate a priori estimate of available I/O bandwidth in a
complex system is usually impossible, the design of a
special-purpose system should be modular so that its
structure can be easily adjusted to match a variety of I/O
bandwidths.
Suppose that the I/O bandwidth between the host and a

special-purpose system is 10 million bytes per second, a
rather high bandwidth for present technology. Assuming
that at least two bytes are read from or written to the host
for each operation, the maximum rate will be only 5
million operations per second, no matter how fast the
special-purpose system can operate (see Figure 1). Orders
of magnitude improvements on this throughput are possi-
ble only if multiple computations are performed per I/O
access. However, the repetitive use of a data item requires
it to be stored inside the system for a sufficient length of
time. Thus, the I/O problem is related not only to the
available I/O bandwidth, but also to the available
memory internal to the system. The question then is how
to arrange a computation together with an appropriate
memory structure so that computation time is balanced
with I/O time.
The I/O problem becomes especially severe when a large

computation is performed on a small special-purpose sys-
tem. In this case, the computation must be decomposed.
Executing subcomputations one at a time may require a
substantial amount of I/O to store or retrieve intermediate
results. Consider, for example, performing the n-point fast
Fourier transform using an S-point device when n is large
and S is small. Figure 2 depicts the n-point FFT computa-
tion and a decomposition scheme for n = 16 and S = 4. Note
that each subcomputation block is sufficiently small so that
it can be handled by the 4-point device. During execution,
results of a block must be temporarily sent to the host and
later retrieved to be combined with results of other blocks
as they become available. With the decomposition scheme
shown in Figure 2b, the total number of I/O operations is
O(n log n/log S). In fact, it has been shown that, to per-
form the n-point FFT with a device of O(S) memory, at
least this many I/O operations are needed for any decom-
position scheme. 14 Thus, for the n-point FFT problem, an
S-point device cannot achieve more than an O(log S)
speed-up ratio over the conventional O(n log n) software
implementation time, and since it is a consequence of the
I/O consideration, this upper bound holds independently
of device speed. Similar upper bounds have been estab-
lished for speed-up ratios achievable by devices for other
computations such as sorting and matrix multiplication. 14,15
Knowing the I/O-imposed performance limit helps pre-
vent overkill in the design of a special-purpose device.

In practice, problems are typically "larger" than
special-purpose devices. Therefore, questions such as
how a computation can be decomposed to minimize I/O,
how the I/O requirement is related to the size of a special-
purpose system and its memory, and how the I/O band-
width limits the speed-up ratio achievable by a special-
purpose system present another set of challenges to the
system architect.

COMPUTER38
Kung, “Why systolic architectures?”
Computer, vol. 15, pp. 37–46, 1982

20Matrix Multiplication: systolic array way

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2018.

PE PE PE

PE PE PE

Memory

21

Tensor Processing Unit (TPU v3, 2018)
• 256 x 256 grid
• 90 TOPS INT8
• 75 W

RTX 8000 (Turing, 2018)
• 4 x 4 x 4 grid / tensor core
• 8 TC x 72 SM
• 130 TFLOPS FP16
• 295 W

RTX A6000 (Ampere, 2020)
• 4 x 4 x 4 grid / tensor core
• 4 TC x 84 SM
• 154 TFLOPS FP16
• 300 W

256!256 ALUs that can perform 8-bit multiply-and-adds on signed or unsigned
integers. The 16-bit products are collected in the 4 MiB of 32-bit Accumulators
below the matrix unit. When using a mix of 8-bit weights and 16-bit activations
(or vice versa), the Matrix Unit computes at half-speed, and it computes at a
quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle
and can perform either a matrix multiply or a convolution. The nonlinear functions
are calculated by the Activation hardware.

The weights for the matrix unit are staged through an on-chipWeight FIFO that
reads from an off-chip 8 GiB DRAM called Weight Memory (for inference,
weights are read-only; 8 GiB supports many simultaneously active models).
The intermediate results are held in the 24 MiB on-chip Unified Buffer, which
can serve as inputs to the Matrix Multiply Unit. A programmable DMA controller
transfers data to or from CPU Host memory and the Unified Buffer.

Control Control

Control

Off-chip I/O

Data buffer

Computation

Control

P
C

Ie
 G

en
3

x1
6

in
te

rf
ac

e

H
os

t i
nt

er
fa

ce

Control Control

Unified
buffer
(local

activation
storage)

Systolic
data
setup

DDR3-2133
interfaces

Weight FIFO
(weight fetcher)

Accumulators

Activation

Normalize / Pool

10
GiB/s

167 GiB/s

167
GiB/s

14 GiB/s 30 GiB/s

30 GiB/s

30 GiB/s

DDR3 DRAM chips

14
GiB/s

14
GiB/s

In
st

r

Matrix multiply
unit

(64K per cycle)

Figure 7.12 TPU Block Diagram. The PCIe bus is Gen3 !16. The main computation part is the light-shaded Matrix
Multiply Unit in the upper-right corner. Its inputs are the medium-shaded Weight FIFO and the medium-shaded Uni-
fied Buffer and its output is the medium-shaded Accumulators. The light-shaded Activation Unit performs the non-
linear functions on the Accumulators, which go to the Unified Buffer.

558 ■ Chapter Seven Domain-Specific Architectures
NVIDIA A100 Tensor Core GPU Architecture In-Depth

25

NVIDIA A100 Tensor Core GPU Architecture

Figure 8 compares V100 and A100 FP16 Tensor Core operations, and also compares V100

FP32, FP64, and INT8 standard operations to respective A100 TF32, FP64, and INT8 Tensor

Core operations. Throughputs are aggregate per GPU, with A100 using sparse Tensor Core

operations for FP16, TF32, and INT8. Note the upper left diagram shows two V100 FP16

Tensor Cores, since a V100 SM has two Tensor Cores per SM partition, while an A100 SM one.

A100 Tensor Core operations compared to V100 Tensor Core and standard operations for different data

types.

Figure 8. A100 vs V100 Tensor Core Operations

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2018.

“NVIDIA A100 Tensor Core GPU Architecture”

22

DNN OPTIMIZATIONS

for hardware acceleration

23Quantization

NVIDIA A100 Tensor Core GPU Architecture In-Depth

27

NVIDIA A100 Tensor Core GPU Architecture

TensorFloat-32 (TF32) provides the range of FP32 with the precision of FP16, 8x precision vs. BF16

(lef t). A100 accelerates tensor math with TF32 while supporting FP32 input and output data (right),

enabling easy integration into DL and HPC programs and automatic acceleration of DL frameworks.

Figure 9. TensorFloat-32 (TF32)

Table 3. A100 Tensor Core Input / Output Formats and Performance vs FP32

FFMA.

Note: TOPS column indicates TFLOPS for floating-point ops and TOPS for integer ops. X-

factors compare MMA ops with and without sparsity to standard FP32 FFMA ops. (Sparse

TOPS represents effective TOPS / TFLOPS using the new Sparsity feature.)

“NVIDIA A100 Tensor Core GPU Architecture”

Big impact on performance, but platform specific

RTX A6000 (Ampere, 2020)
• 77 TFLOPS TF32
• 154 TFLOPS BF16/FP16
• 309 TOPS INT8
• 619 TOPS INT4

24Sparsity

Coarse grain sparsity
Reduce workload and improve
throughput

Fine grain sparsity
Irregular memory access reduce
throughput

Appendix B - Sparse Neural Network Primer

79
NVIDIA A100 Tensor Core GPU Architecture

A network pruned for coarse-grained sparsity (Figure 41) will have entire sub-sections of the
network removed. While this helps maintain the parallel nature of the workload and improves
throughput, a larger loss in accuracy may be undesirable.

Figure 41. Coarse Grained Sparsity

Appendix B - Sparse Neural Network Primer

78

NVIDIA A100 Tensor Core GPU Architecture

Figure 40. Fine-Grained Sparsity

A network with fine-grained sparsity would have the same number of nodes, but fewer edges

irregularly distributed across the network. As seen in Figure 40, the amount of data fetched from

memory and computations required to compute the output of each node would vary from node

to node. This leads to irregular memory accesses and load balancing issues that reduce the

parallel nature of compute workload and thus reducing GPU compute throughput.

“NVIDIA A100 Tensor Core GPU Architecture”

25Sparse matrix packing

Pack weights in smaller matrix • Increase density and
throughput

• Requires hardware support

NVIDIA A100 Tensor Core GPU Architecture In-Depth

32
NVIDIA A100 Tensor Core GPU Architecture

A100 Fine-Grained Structured Sparsity prunes trained weights with a 2-out-of-4 non-zero pattern,
followed by a simple and universal recipe for fine-tuning the non-zero weights. The weights are
compressed for a 2x reduction in data footprint and bandwidth, and the A100 Sparse Tensor Core
doubles math throughput by skipping the zeros.

Figure 12. A100 Fine-Grained Structured Sparsity

NVIDIA has developed a simple and universal recipe for sparsifying deep neural networks for
inference using this 2:4 structured sparsity pattern. The network is first trained using dense
weights, then fine-grained structured pruning is applied, and finally the remaining non-zero
weights are fine-tuned with additional training steps. This method results in virtually no loss in
inferencing accuracy based on evaluation across dozens of networks spanning vision, object
detection, segmentation, natural language modeling, and translation.

Sparse Matrix Multiply-Accumulate (MMA) Operations
A100’s new Sparse MMA instructions skip the compute on entries that have zero values,
resulting in a doubling of the Tensor Core compute throughput. For example, in Figure 13
Below, Matrix A is a Sparse matrix with 50% sparsity following the required 2:4 structured
pattern and Matrix B is a dense matrix of half the size. A standard MMA operation would not
skip the zero values and would compute the result for the entire 16x8x16 matrix multiply in N
cycles. Using a Sparse MMA instruction, only the elements in each row of Matrix A that have a
non-zero value are matched with the corresponding elements from Matrix B. This transforms the
computation into a smaller matrix multiply that takes just N/2 cycles, a 2x speedup.

H. T. Kung, et al., “Packing Sparse Convolutional Neural Networks for Efficient Systolic Array
Implementations: Column Combining Under Joint Optimization,” ASPLOS 2019.

“NVIDIA A100 Tensor Core GPU Architecture”

26Bibliography

Nvidia documentation
• Nvidia, “Nvidia Deep Learning Performance Documentation,” Jul. 2020.
• Nvidia, “NVIDIA A100 Tensor Core GPU Architecture,” 2020.
• S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” 2014.
Bibliography
• J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, Sixth Edition. Elsevier, 2018.
• J. Gómez Luna and O. Mutlu, “Computer Architecture: GPU

Programming,” ETH Zurich, Fall 2020.
• H. T. Kung, B. McDanel, and S. Q. Zhang, “Packing Sparse

Convolutional Neural Networks for Efficient Systolic Array
Implementations: Column Combining Under Joint Optimization,”
ASPLOS, pp. 821–834, 2019.

• N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” Commun. ACM, Aug. 2018.

• Kung, “Why systolic architectures?,” Computer, vol. 15, Jan. 1982.

https://docs.nvidia.com/deeplearning/performance/index.html
http://arxiv.org/abs/1410.0759
https://www.youtube.com/watch?v=AkYnuqVpCug

