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Paper motivation

● New loss based on differentiable histogram construction for image-to-image 
translation.

● Application to color transfer.

● This presentation will focus on differentiable histogram computation and the 
earth mover’s distance.
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Image-to-Image Translation (I2I)

● I2I is a computer vision task.

● I2I aims to learn the mapping between an input image from one domain to an 
output image from another domain following the style or characteristics.

● I2I has a wide range of applications : image synthesis, segmentation, style

transfer, restoration, and pose estimation, color transfer.
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Image-to-Image Translation (I2I)

4Source: StyleGAN

Style transfer

https://arxiv.org/abs/1812.04948
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Image-to-Image Translation (I2I)

Source : HueNet

Color transfer

https://arxiv.org/abs/1912.06044
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Key ideas

● Differentiable intensity based loss 
○ Differentiable cyclic histogram construction
○ Cyclic Earth Mover’s Distance (EMD)

● Differentiable mutual information loss
○ differentiable joint intensity histogram construction
○ statistical pixel-to-pixel similarity

● Conditionnal adversial loss
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Key ideas

● Differentiable intensity based loss (Intensity based metric)
○ Differentiable cyclic histogram construction
○ Cyclic Earth Mover’s Distance (EMD)

● Differentiable mutual information loss (Semantic based metric)
○ differentiable joint intensity histogram construction
○ statistical pixel-to-pixel similarity

● Conditionnal adversial loss
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Hue-Net architecture
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HSV color representation
● HSV color representation is used instead of RGB to get the cyclic aspect the loss.

Red Green Blue

Hue Saturation Value
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Differentiable intensity histogram formulation
● Kernel density estimation : 

■ Kernel density estimation is the process of estimating an unknown probability density function using a kernel 
function (also known as Parzen-Rosenblatt method).

a gray scale image - Sample of an unknown distribution. 

Number of pixels in the image.

The bandwidth.
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Differentiable intensity histogram formulation
● Kernel density estimation : 

■ Kernel density estimation is the process of estimating an unknown probability density 
function using a kernel function (also known as Parzen-Rosenblatt method).

The kernel function K is typically:
● everywhere non-negative : K(x) ≥ 0, for every x.
● symmetric : K(x) = K(-x) for every x.
● decreasing: K’(x) ≤ 0 for every x>0

https://fr.wiktionary.org/wiki/%E2%89%A5
https://fr.wiktionary.org/wiki/%E2%89%A4
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Differentiable intensity histogram formulation
● Kernel density estimation : 

■ Kernel density estimation is the process of estimating an unknown probability density function using a kernel 
function (also known as Parzen-Rosenblatt method).



19

Differentiable intensity histogram formulation
● Differentiable histogram construction

* The total range is partitioned into        subintervals         of length                    and center                                             .

*Then 
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Differentiable intensity histogram formulation
● Differentiable histogram construction

* The total range is partitioned into        subintervals         of length                    and center                                             .

*Then 

differentiable approximation of Rect function.
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Differentiable intensity histogram formulation
● Differentiable histogram construction

* The total range is partitioned into        subintervals         of length                    and center                                             .

*Then 

The histogram h of an image I is defined as follows : 
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Earth Mover’s Distance (EMD).
We assumed previously that we don’t know the distribution of the images and we estimate them 

by KDE. 
We can now compute a loss based on these distributions based on Optimal Transport.
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Earth Mover’s Distance (EMD).

Let’s define two uniform distributions p(x) and q(x).
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Earth Mover’s Distance (EMD).
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much probability mass from one point in the support of 
p(x) is assigned to a point in the support of q(x).
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Earth Mover’s Distance (EMD).

We can define a coupling matrix. That represents how 
much probability mass from one point in the support of 
p(x) is assigned to a point in the support of q(x).

If we assume that the supports for p(x) and q (x) are {1, 2, 3, 4} and 
{5,6,7,8}, respectively, the matrix cost is : 
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Earth Mover’s Distance (EMD).

With these definitions, the total cost can be 
calculated as the Frobenius inner product 
between P and C:

https://en.wikipedia.org/wiki/Frobenius_inner_product
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Earth Mover’s Distance (EMD).

More generally : 

We aim to find a flow that minimizes the 
overall cost :

For one-dimensional histograms with 
equal areas, EMD has been shown to be 
equivalent to Mallows distance which 
has the following closed-form solution : 
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Semantic-based metric

The mutual information between two 
images is defined as follows : 

Joint entropy
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Semantic-based metric

Differentiable joint intensity histogram : 
● Multivariate KDE is used for the estimation of the joint density.

Using the definition of      we can expressed the value of joint histogram         
bin as : 
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Semantic-based metric

The semantic based metric is defined as following : 

2D joint histograms of source and target
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Summary of the architecture

https://forms.gle/wAmRSChHpa65d1So7
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https://forms.gle/wAmRSChHpa65d1So7
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Summary of the architecture
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Results

https://forms.gle/wAmRSChHpa65d1So7
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Results

https://forms.gle/wAmRSChHpa65d1So7
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Results

https://forms.gle/wAmRSChHpa65d1So7
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Results

https://forms.gle/wAmRSChHpa65d1So7

Perceptual realism
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Summary and key contributions

● Differentiable cyclic and joint intensity histogram construction.

● Intensity-based loss with EMD

● Mutual information loss for statistical pixel-to-pixel similarity.

● Unified deep learning framework.
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