

Dense Gated Blocks

Towards layers relationships in densely connected blocks

Joseph Wagane FAYE Univ. Rennes, INSA Rennes, IETR - UMR CNRS 6164

VAADER "AI for Image" Reading Group - 2021-18-03

- Speaker presentation
- DenseNet Reminder
- Dense Gated Blocks
- Application for Brain Lesion Segmentation
- Conclusion

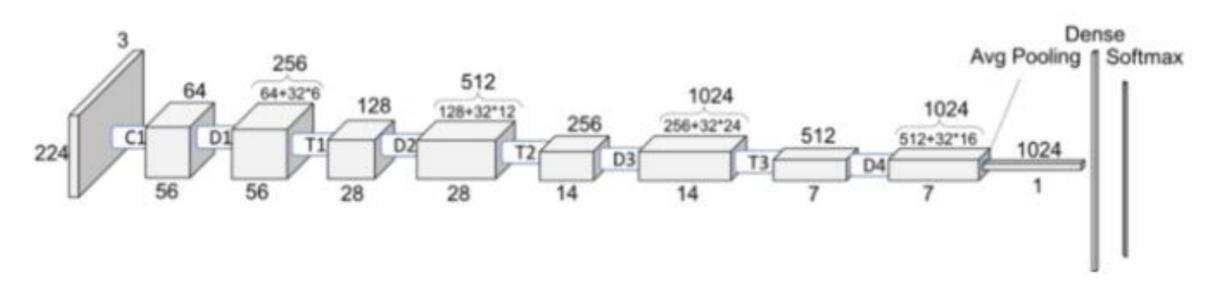
- Joseph Wagane FAYE
- INSA Rennes Engineer« Electronique CDTI», 2019 (Before that, I was student at SRC departement 2016-2017)
 - R&D apprentice engineer at Orange Labs Lannion:
 - Study of the problem of classifying acoustic signals in real conditions using machine learning techniques.
 - Design of an algorithm for sound recognition related to the home environment and prototyping of a dedicated tool.
 - Demonstration at the Orange 2019 research fair.
- Research Engineer since December 2019 for RAISE project:
 - Deep learning field : Monocular depth estimation based on CNN and their efficient evaluation.
- Hobbies
 - Football, Soccer, Combat sports
 - Chess
 - Politics, History and Civilization



A Dense-Gated U-Net for Brain Lesion Segmentation

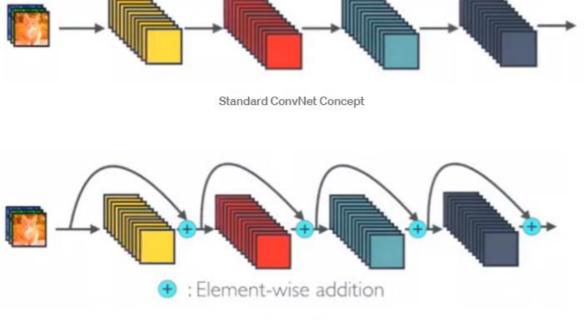
Zhongyi Ji¹, Xiao Han¹, Tong Lin^{* 2}, and Wenmin Wang³ ¹School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School ²The Key Laboratory of Machine Perception (MOE), School of EECS, Peking University; and Peng Cheng Laboratory ³International Institute of Next Generation Internet, Macau University of Science and Technology jizhongyi@pku.edu.cn, hanxiao18@pku.edu.cn, lintong@pku.edu.cn, wmwang@must.edu.mo

- This is a paper in **2020 VCIP**
- In this paper :
 - A **Dense-Gated Unet (DGNet)**, whicj is a hybrid of Dense-gated blocks and U-Net is proposed
 - **DGNet** can achieve weighted concatenation and suppress useless features.

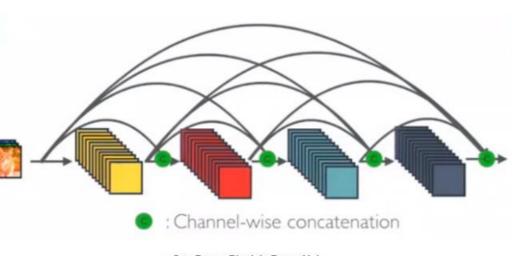


DenseNet Architecture

Dense-121. Dx: Dense Block x. Tx: Transition Block x



ResNet Concept



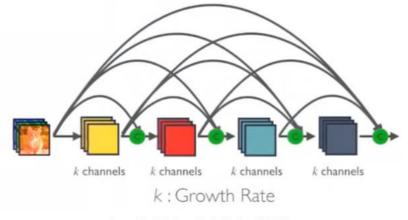
In *Standard ConvNet*, input image goes through multiple convolution and obtain high-level features

In *Residual Block concept*, identity mapping is proposed to promote the gradient propagation. Element-wise addition is used.

In *DenseNet*, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.

One Dense Block in DenseNet

DenseNet Reminder : Dense Blocks

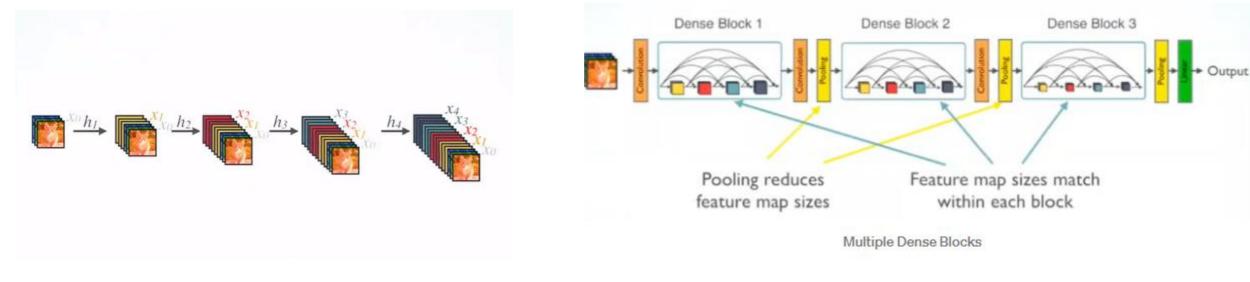


Dense Block in DenseNet with Growth Rate k

Since each layer receives feature maps from all preceding layers, network can be thinner and compact, i.e. number of channels can be fewer

Concatenation during Forward Propagation

$$k_l = k_0 + k * (l - 1)$$

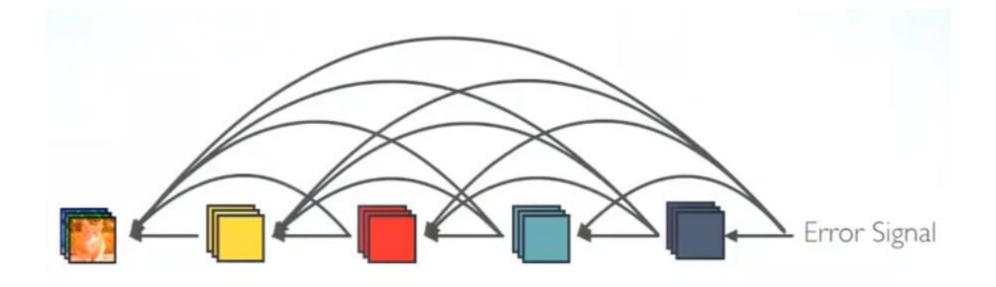


Composition Layer

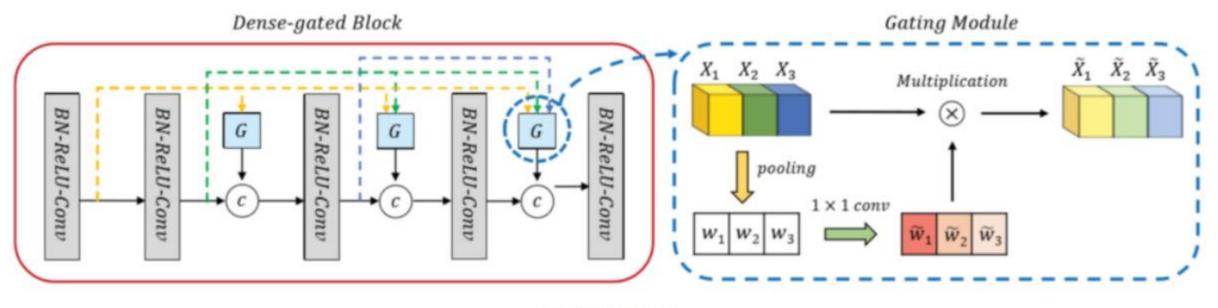
For each composition layer, Pre-Activation Batch Norm (BN) and ReLU, then 3×3 Conv are done with output feature maps of *k* channels, say for example, to transform x0, x1, x2, x3 to x4.

- 1×1 Conv followed by 2×2 average pooling are used as the transition layers between two contiguous dense blocks
- Feature map sizes are the same within the dense block so that they can be concatenated together easily.
- At the end of the last dense block, a global average pooling is performed and then a softmax classifier is attached

• Advantage : Strong gradient flow

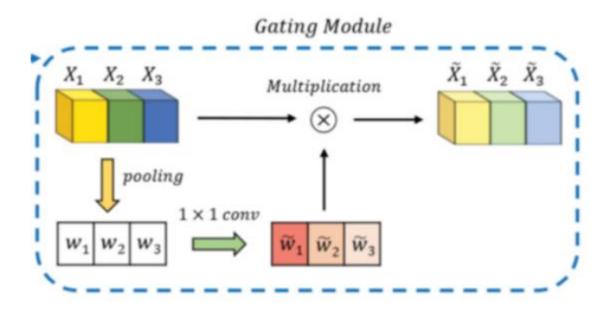


• Drawback : Redundancy



Dense-gated Blocks

- The original dense connections are changed by **reweighting each feature maps before concatenation** and design a gating module to make the network **focus on more informative feature maps.**
- More precisely, feature compression is performed and turn each of feature maps concatenated into a layer descriptor.
- This layer descriptor has a global receptive field in certain degrees, and the output dimension matches the number of input characteristic concatenation.



For the (l+1)-th layer, a statistic $z \in Rl$ is generated by squeezing the feature maps X and zc as the c-th element of z can be expressed as

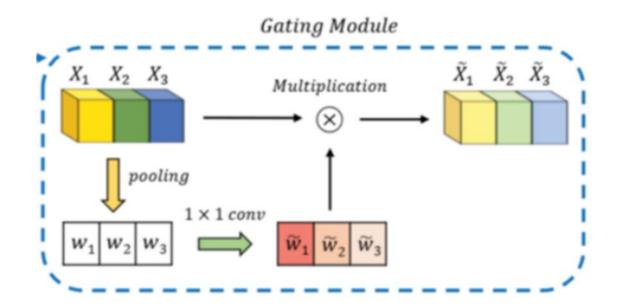
$$z_{c} = \frac{1}{D_{c} \times W_{c} \times H_{c}} \sum_{i=1}^{D_{c}} \sum_{j=1}^{W_{c}} \sum_{k=1}^{H_{c}} x_{c}(i,j,k), c \in (0,1,\ldots,l)$$

After applying global average pooling above, then 1×1 convolutional layers *Wa* and *Wb*, are used to explicitly model the correlation between different layers.

$$s = \sigma \left(W_b \delta \left(W_a z \right) \right),$$

the final output is a reweight operation

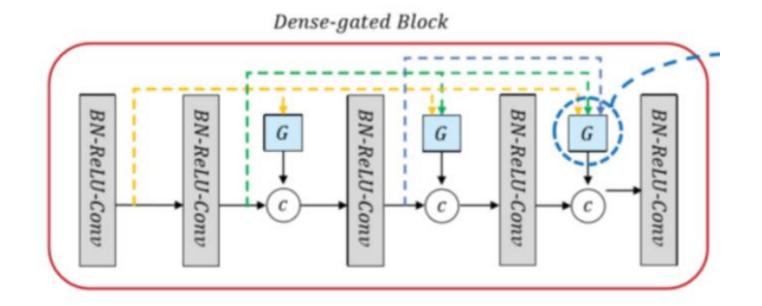
 $\widetilde{x_c} = s_c \odot x_c,$



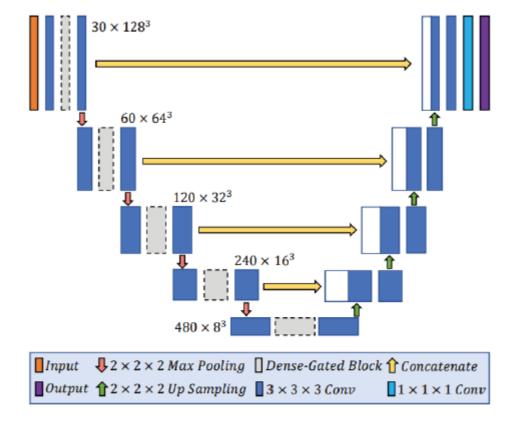
Dense Gated Blocks

The feature maps are densely connected in a left-right manner within a block. Each dense-gated block has 5 convolutional layers:

 $h_{l} = [x_{0}, x_{1}, \dots, x_{l}],$ $x_{l+1} = \varphi \left([x_{l}, g_{l} (h_{l})] \right),$ $\varphi \left(x_{i} \right) = \mathbf{W} * \delta \left(\mathbf{B} (x_{i}) \right), i \in \{0, \dots, l\}.$



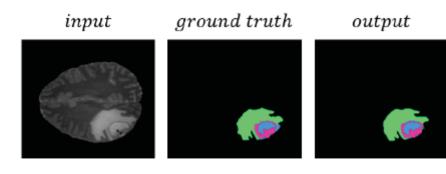
This idea is similar to the one in DenseNet



3D U-Net

BraTS 2018 Dataset

MICCAI BraTS 2018 training set and validation set consist of ample multi-institutional clinically-acquired and multi-modal MRI scans of glioblastoma (HGG) and lowergrade glioma (LGG).

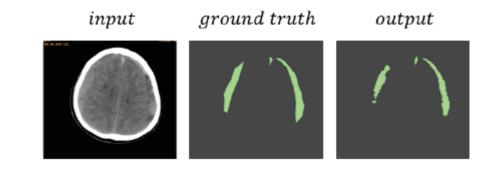


Method		Dice		H	lausdorff9	5
Wellou	ET	WT	TC	ET	WT	TC
Isensee [10]	0.810	0.908	0.854	2.540	4.970	7.040
Myro [11]	0.817	0.907	0.860	3.824	4.412	6.841
McKi [12]	0.796	0.903	0.847	3.550	4.170	4.930
Zhou [13]	0.814	0.909	0.853	2.716	4.172	6.545
Our	0.818	0.912	0.862	2.703	3.901	4.595
Chen [14]	0.740	0.888	0.844	4.631	5.888	5.661
Isensee [10]	0.772	0.901	0.843	3.680	5.610	6.000
Our	0.830	0.899	0.899	2.167	3.772	3.791
Base	0.771	0.898	0.822	3.223	6.306	9.244
Base+DB	0.798	0.892	0.825	4.894	6.225	8.037
Base+DGB	0.818	0.912	0.862	2.703	3.901	4.595

Top: Validation Set, Middle: Training Set, Bottom: Ablation Study on Validation Set

Hemorrhage Dataset Collected by Authors

It is made up of **intracranial hemorrhage CT images** consisting of 500 collected patients from hospitals. The Annotations include intracranial hemorrhage area (lesion, labeled as 1), while other pixels are all labeled as 0.

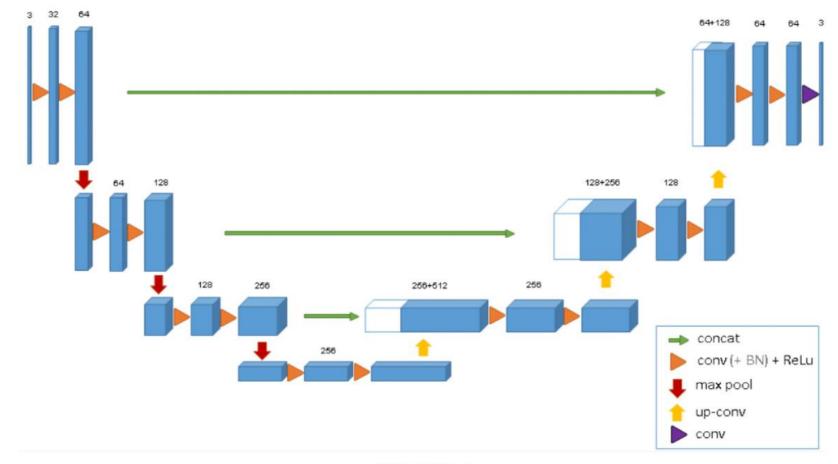


Methods	Lesion	Background	mIoU
Base	0.673	0.995	0.834
Base+DB	0.682	0.996	0.839
Base+DGB	0.692	0.996	0.844
DeepMedic	0.683	0.997	0.840
UNet++	0.677	0.995	0.836
DenseASPP	0.670	0.996	0.833
DeepLabv3	0.639	0.995	0.817

IoU Results

Thank you for your attention

Bonus : 3D – UNet



3D U-Net Architecture