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BIAS VS VARIANCE

Ü Where is deep learning on the x-axis?
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UNDERFITTING VS OVERFITTING

Where is deep learning on the x-axis?

Authors perform a simple experimental
framework to propose an answer to this

question.
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EXPERIMENTAL FRAMEWORK

Ü True labels
Ü Random labels (previous slide)

Ü Partially corrupted labels

Ü Independently for each image and with a probability p, draw
a random label for this image

Ü Shuffled pixels

Ü Select one random pixel permutation. Apply this permutation
to all images.

Ü Random pixels

Ü Independently for each image, apply a random permutation.

Ü Gaussian pixels

Ü Independently for each pixel, draw a random value from
gaussian distribution with mean and std from original dataset
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EXPERIMENTAL FRAMEWORK

Ok cool but ...

... what’s the point of these experiments?
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RESULTS
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HOW BAD IS IT, DOCTOR?

Ü Training loss always converges to 0!

Ü The effective capacity of Neural Network (NN) is sufficient
for memorizing the entire data set.

Ü NN are able to capture the remaining signal in the data if
any, while at the same time fit the noisy part using
brute-force.

Ü Optimization remains easy, whatever you aim to fit.

Ü Easy even with random labels (the randomization breaks
any relationship between the image and the label).
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BIAS VS VARIANCE

Ü The effective capacity of NN is sufficient for memorizing the
entire data set.

Ü Thus, very high overfitting

Ü At the same time, increasing model complexity allow to reduce
test error (and thus generalization error since training error is 0)

Ü Something is wrong
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REGULARIZERS

Popular Belief Neural Network (NN) converges thanks to implicit
and explicit regularizers

Explicit regularizers are:

Ü Data augmentation

Ü Weight decay (L2 norm penalty on weights when too big)

Ü Dropout

Implicit regularizers are:

Ü Early stopping (stop training when generalization error is
minimal)

Ü SGD

Ü NN architecture
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REGULARIZERS EXPERIMENTS
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REGULARIZERS CONCLUSIONS

Ü NN training loss converge to 0, with or without regularizers

Ü Training space with regularizers is still huge

Ü Regularizers improve generalization but...

Ü it is not necessary for NN to converge
Ü it is unlikely that regularizers are the fundamental reason for

generalization

Ü Implicit Regularization with NN architecture is more powerful to
reduce generalization error
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VC DIMENSION - STATISTICAL LEARNING THEORY

Let f be a classification model with weights θ that aims to predicts
labels yi, i∈{1,...N} based on input features xi, i∈{1,... N}.

It it said that f shatters a dataset with N ∈ N elements if there exists
a configuration for θ such that model f makes no errors while
predicting yi based on xi for each i ∈ {1, . . . N}.

The VC dimension of a model f is greater than or equal to N if there
exists at least one set of N points where f can shatter all
arrangements.

There is no set of 4 points that
can be shattered by a line.

VC dim ≥ 3 VC dim < 4
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VC DIMENSION - STATISTICAL LEARNING THEORY

Let N be the size of the dataset and DVC the VC dimension of model
f . With probability 1− δ:

errtest ≤ errtrain +

√
1
N
[DVC(log(

2N
DVC

) + 1)− log(
δ

4
)]

8 For deep learning, DVC � N most of the time (complex solutions)

Ü The effective capacity of NN is sufficient for memorizing the
entire data set.

Ü Thus, DVC ≥ N

12
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NN FINITE SAMPLE EXPRESSIVITY

Ü Most work in the litterature try to characterize NN expressivity at
the population level

Ü population level: infinite sample size (dataset with infinite
number of elements)

Ü Instead, authors propose to express NN expressivity on a finite
sample size N

Theorem 1 There exists a two-layer neural network with ReLU
activations and 2N + d weights that can represent any function on a
sample of size N in d dimensions.
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NN FINITE SAMPLE EXPRESSIVITY

Dataset N d 2N + d
MNIST 70.000 282 = 784 140.784

CIFAR10 50.000 3× 322 = 3.072 103.072
ImageNet 1.281.165 3× 2242 = 150.528 1.431.693

Number of parameters of ImageNet state-of-the-art models 14
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NN FINITE SAMPLE EXPRESSIVITY

This explains why NN manage to have 0
training error on random labels

They just have way too many parameters!



Conclusion
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CONCLUSION

Ü Authors propose a simple framework to evaluate NN expressivity

Ü Deep learning algorithms are large enough to shatter existing
datasets, but still generalize to unseen examples

Ü Regularizers is not the reason why

Ü It remains easy to converge on data where generalization is
impossible

Ü Authors show an upper bound on the number of parameter for a
NN with ReLU activations to represent any function

Ü There is more in the paper, but I did not fully understand to
present it

15
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datasets, but still generalize to unseen examples
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Thank you for listening!

Any questions?
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